Monday, April 8, 2013

STEM CELL THERAPY.....

Stem Cells Fill Gaps in Bones




 For many patients the removal of several centimetres of bone from the lower leg following a serious injury or a tumour extraction is only the beginning of a long-lasting ordeal. Autologous stem cells have been found to accelerate and boost the healing process. Surgeons at the RUB clinic Bergmannsheil have achieved promising results: without stem cells, it takes on average 49 days for one centimetre of bone to regrow; with stem cells, that period has been reduced to 37 days.
In the past, large bone defect inevitably led to an amputation. Today, the arm or leg is stabilised in an external support, and a transport wire is pulled through the marrow of the intact part of the injured bone. Once the soft tissue surrounding the injury is healed, the surgeons cut the healthy part of the bone into two. The transport wire is affixed to the winches of a ring fixator that is attached around the leg. Using a sophisticated cable-pull system, the previously detached part of the bone is slowly pulled either downwards or upwards along the gap in the bone until it arrives and docks at the other end. During the pulling stage, the periosteum of the bone that had been pulled apart had been continuously stretched. Thus, a periosteum tube is created in the gap behind the relocated portion of the bone. Inside that tube, the new bone can regenerate. This process, however, is extremely tedious and the treatment fails in every firth case.

Processing autologous stem cells in the operating theatre
Surgeons at the RUB clinic Bergmannsheil attempt to optimise the healing process by applying autologous stem cells therapy. Depending on the requirements, stem cells are capable of evolving into different types of tissue cells, including so-called osteoblasts -- cells that are responsible for bone formation. Adult stem cells such as are deployed in the process can be found in the bone marrow of adults. "We harvest them by inserting a hollow needle into the iliac crest," explains PD Dr Dominik Seybold, managing consultant at the clinic.
The stem cells are prepared for application directly on location. Under x-ray control, the surgeons inject six to eight millilitres of the concentrated fluid into the centre of the periosteum tube. X-ray controls are routinely performed to monitor the recovery progress. To date, the RUB physicians have applied this therapy in 20 cases. "This is not enough to be statistically relevant," admits Dr Seybold. Nevertheless, the researchers find the results very encouraging: whilst the bone regeneration process without stem cells used to take 49 days on average, it has been reduced to 37 days on average thanks to the new therapy method. So far, RUB scientists have been treating bone defects with an average length of eight centimetres -- consequently, the patients thus recovered, on average, three months sooner.

Story Source:
The above story is reprinted from materials provided by Ruhr-Universitaet-Bochum, via AlphaGalileo.

Sunday, April 7, 2013

Natural killer cell = The wonder creation , may be a mutation of WBC......

Natural killer cell


From Wikipedia, the free encyclopedia
  (Redirected from Natural Killer cell)
Jump to: navigation, search
Natural killer cells (or NK cells) are a type of cytotoxic lymphocyte critical to the innate immune system. The role NK cells play is analogous to that of cytotoxic T cells in the vertebrate adaptive immune response. NK cells provide rapid responses to virally infected cells and respond to tumor formation, acting at around 3 days after infection. Typically immune cells detect MHC presented on infected cell surfaces, triggering cytokine release causing lysis or apoptosis. NK cells are unique, however, as they have the ability to recognize stressed cells in the absence of antibodies and MHC, allowing for a much faster immune reaction. They were named “natural killers” because of the initial notion that they do not require activation in order to kill cells that are missing “self” markers of major histocompatibility complex (MHC) class 1 .[1]
NK cells are defined as large granular lymphocytes (LGL) and constitute the third kind of cells differentiated from the common lymphoid progenitor generating B and T lymphocytes.[2] NK cells are known to differentiate and mature in the bone marrow, lymph node, spleen, tonsils and thymus where they then enter into the circulation. .[3] NK cells differ from Natural Killer T cells (NKT) phenotypically, by origin and by respective effector functions; often NKT cell activity promotes NK cell activity by secreting IFNγ. In contrast to NKT cells, NK cells do not express T-cell antigen receptors (TCR) or Pan T marker CD3 or surface immunoglobulins (Ig) B cell receptors, but they usually express the surface markers CD16 (FcγRIII) and CD56 in humans, NK1.1 or NK1.2 in C57BL/6 mice. Up to 80% of human NK cells also express CD8.
In addition to the knowledge that natural killer cells are effectors of innate immunity, recent research has uncovered information on both activating and inhibitory NK cell receptors which play important function roles including self tolerance and sustaining NK cell activity. NK cell also play a role in adaptive immune response ,[4] numerous experiments have worked to demonstrate their ability to readily adjust to the immediate environment and formulate antigen-specific immunological memory, fundamental for responding to secondary infections with the same antigen. The ability for NK cells to act in both the innate and adaptive immune response is becoming increasingly important in research utilizing NK cell activity and potential cancer therapies.
 
NK cell receptors :
NK cell receptors can also be differentiated based on function. Natural cytotoxicity receptors directly induce apoptosis after binding to ligands that directly indicate infection of a cell. The MHC dependent receptors (described above) use an alternate pathway to induce apoptosis in infected cells. Natural killer cell activation is determined by the balance of inhibitory and activating receptor stimulation i.e. if the inhibitory receptor signaling is more prominent then NK cell activity will be inhibited, similarly if the activating signal is dominant then NK cell activation will result .[5]

Protein Structure of NKG2D
NK cell receptor types (with inhibitory as well as some activating members) are differentiated by structure, with a couple of examples to follow:
Activating receptors
  • Ly49 (homodimers) — a relatively ancient, C-type lectin family receptor; are of multigenic presence in mice, while humans have only one pseudogenic Ly49; the receptor for classical (polymorphic) MHC I molecules.
  • NCR (natural cytotoxicity receptors), upon stimulation, mediate NK killing and release of IFNϒ.
  • CD94 : NKG2 (heterodimers) — a C-type lectin family receptor, conserved in both rodents and primates and identifies non-classical (also non-polymorphic) MHC I molecules like HLA-E. Expression of HLA-E at the cell surface is dependent on the presence of nonamer peptide epitope derived from the signal sequence of classical MHC class I molecules, which is generated by the sequential action of signal peptide peptidase and the proteasome. Though indirect, this is a way to survey the levels of classical (polymorphic) HLA molecules.
  • CD16 (FcγIIIA) play a role in antibody-dependent cell-mediated cytotoxicity (ADCC), in particular they bind IgG.

Function :

Cytolytic granule mediated cell apoptosis

NK cells are cytotoxic; small granules in their cytoplasm contain proteins such as perforin and proteases known as granzymes. Upon release in close proximity to a cell slated for killing, perforin forms pores in the cell membrane of the target cell, creating an aqueous channel through which the granzymes and associated molecules can enter, inducing either apoptosis or osmotic cell lysis. The distinction between apoptosis and cell lysis is important in immunology: lysing a virus-infected cell could potentially only release the virions, whereas apoptosis leads to destruction of the virus inside. αdefensins, an antimicrobial is also secreted by NK cells, it directly kills bacteria by disrupting their cell walls analogous to neutrophils.[3]

Antibody-dependent cell-mediated cytotoxicity (ADCC)

Infected cells are routinely opsonised with antibodies for detection by immune cells. Antibodies that bind to antigens can be recognised by FcϒRIII (CD16) receptors expressed on NK cells resulting in NK activation, release of cytolytic granules and consequent cell apoptosis .[6]

Cytokine induced NK and CTL activation

Cytokines play a crucial role in NK cell activation. As these are stress molecules released by cells upon viral infection, they serve to signal to the NK cell the presence of viral pathogens. Cytokines involved in NK activation include IL-12, IL-15, IL-18, IL-2, and CCL5. NK cells are activated in response to interferons or macrophage-derived cytokines. They serve to contain viral infections while the adaptive immune response is generating antigen-specific cytotoxic T cells that can clear the infection. NK cells work to control viral infections by secreting IFNγ and TNFα, IFNγ activates macrophages for phagocytosis and lysis and TNFα acts promote direct NK tumor cells killing. Patients deficient in NK cells prove to be highly susceptible to early phases of herpes virus infection.

Missing 'self' hypothesis


Schematic diagram indicating the complementary activities of cytotoxic T-cells and NK cells.
In order for NK cells to defend the body against viruses and other pathogens, they require mechanisms that enable the determination of whether a cell is infected or not. The exact mechanisms remain the subject of current investigation, but recognition of an "altered self" state is thought to be involved. To control their cytotoxic activity, NK cells possess two types of surface receptors: activating receptors and inhibitory receptors. Most of these receptors are not unique to NK cells and can be present in some T cell subsets as well.
These inhibitory receptors recognize MHC class I alleles, which could explain why NK cells kill cells possessing low levels of MHC class I molecules. This inhibition is crucial to the role played by NK cells. MHC class I molecules are the main mechanism by which cells display viral or tumor antigens to cytotoxic T-cells. A common evolutionary adaptation to this seen in both intracellular microbes and tumours, the chronic down-regulation of MHC I molecules, rendering the cell impervious to T-cell mediated immunity. It is believed that NK cells, evolved as an evolutionary response to this adaptation (the loss of the MHC deprives CD4/CD8 action so another immune cell evolved to fulfil the requirement). .[7]

Tumor cell surveillance

Natural Killer Cells (NK) often lack antigen specific cell surface receptors and therefore are part of innate immunity i.e. able to react immediately with no prior exposure to the pathogen. In both mice and humans NKs can be seen to play a role in tumor immuno-surveillance by directly inducing the death of tumor cells (NKs act as cytolytic effector lymphocytes) even with the absence of surface adhesion molecules and antigenic peptides, this role of NK cells is critical for immune success particularly because T cells are unable to recognize pathogens in the absence of surface antigens.[1] Tumor cell detection results in activation of NK cells and consequent cytokine production and release.
If the tumor cells do not cause inflammation they will also be regarded as self and therefore will not induce a T cell response. A number of cytokines are produced by NKs including Tumor Necrosis Factor α (TNFα), IFNγ and Interleukin (IL-10); TNFα and IL-10 act as pro-inflammatory and immuno-suppressors respectively. The activation of NK cells and subsequent production of cytolytic effector cells impacts macrophages, dendritic cells and neutrophils which subsequently affects antigen specific T and B cell responses. Instead of acting via antigen specific receptors, lysis of tumor cells by NK cells is mediated by alternative receptors including NKG2D, NKp44, NKp46, NKp30 and DNAM.[5] NKG2D is a disulphide linked homodimer which recognizes a number of ligands, including ULBP and MICA, which are typically expressed on tumor cells.
NK cells, along with macrophages and several other cell types, express the Fc receptor (FcR) molecule (FC-gamma-RIII = CD16), an activating biochemical receptor that binds the Fc portion of antibodies. This allows NK cells to target cells against which a humoral response has been mobilized and to lyse cells through Antibody-dependent cellular cytotoxicity (ADCC).NK cells promote the expression of FAS on cancer cells, FAS is not normally expressed on tumor cells, and it therefore aids FAS-dependent apoptosis upon binding with FASL expressing NK cells.[6]

NK cell function in adaptive response

The ability to generate memory cells following a primary infection and the consequent rapid immune activation and response to succeeding infections by the same antigen is fundamental to the role T and B cells play in the adaptive immune response. Despite prior belief that NK cells play no role in the adaptive immune responses, they have since been found to undergo expansion, contraction, memory maintenance and recall .[8]

NK cell function in pregnancy
As the majority of pregnancies involve two parents who are not tissue matched, successful pregnancy requires the mother's immune system to be suppressed. NK cells are thought to be an important cell type in this process.[9] These cells are known as "uterine NK cells" (uNK cells) and they differ from peripheral NK cells. They are in the CD56bright NK cell subset, potent at cytokine secretion, but with low cytotoxic ability and relatively similar to peripheral CD56bright NK cells, with a slightly different receptor profile.[9] These uNK cells are the most abundant leukocytes present in the uterus in early pregnancy, representing approximately 70% of leukocytes here, however where they originate from remains controversial.[10]
These NK cells have been shown to have the ability to elicit cell cytotoxicity in vitro, however at a lower level than peripheral NK cells, despite containing perforin.[11] Lack of cytotoxicity in vivo may be due to the presence of ligands for their inhibitory receptors. Trophoblast cells downregulate HLA-A and HLA-B in order to defend against cytotoxic T cell-mediated death. This would normally trigger NK cells by missing self recognition, however these cells survive. It is thought that the selective retention of HLA-E (which is a ligand for NK cell inhibitory receptor NKG2A) and HLA-G (which is a ligand for NK cell inhibitory receptor KIR2DL4) by the trophoblast defends it against NK cell-mediated death.[9]
NK cells secrete a high level of cytokines which help mediate their function. Some important cytokines they secrete include TNF-α, IL-10, IFN-γ and TGF-β, among others.[9] For example, IFN-γ dilates and thins the walls of maternal spiral arteries to enhance blood flow to the implantation site. [12]

NK cell evasion by tumor cells

By shedding decoy NKG2D soluble ligands tumor cells have evolved a process by which they are able to avoid immune responses. These soluble NKG2D ligands bind to NK cell NKG2D receptors activating a false NK response and consequently creating competition for the receptor site.[1] This method of evasion occurs in prostate cancer. In addition, prostate cancer tumors can evade CD8 cell recognition due to the ability to lose expression of MHC class 1 molecules. This example of immune evasion actually highlights NK cell importance in tumor surveillance and response as CD8 cells can consequently only act on tumor cells in response to NK initiated cytokine production (adaptive immune response) .[13]

History

In early experiments on cell-mediated cytotoxicity against tumor target cells, both in cancer patients and animal models, investigators consistently observed what was termed a "natural" reactivity, that is, a certain population of cells seemed to be able to lyse tumor cells without having been previously sensitized to them. As these discoveries were incompatible with the established model at the time, many initially considered that these observations were artifacts.[14] However, by 1973, 'natural killing' activity was established across a wide variety of species, and the existence of a separate lineage of cells possessing this ability was postulated.
The discovery that a unique type of lymphocyte was responsible for “natural” or spontaneous cytotoxicity was made in the early 1970s by doctoral student Rolf Kiessling and post-doctoral fellow Hugh Pross, in the mouse,[15] and by Hugh Pross and doctoral student Mikael Jondal in the human.[16][17] The mouse and human work was carried out under the supervision of professors Eva Klein and Hans Wigzell, respectively, of the Karolinska Institute, Stockholm. Kiessling’s research involved the well-characterized ability of T-lymphocytes to lyse tumor cells against which they had been previously immunized. Pross and Jondal were studying cell-mediated cytotoxicity in normal human blood and the effect of the removal of various receptor-bearing cells on this cytotoxicity. Later that same year Ronald Herberman published similar data with respect to the unique nature of the mouse effector cell.[18] The human data were confirmed, for the most part, by West et al.[19] using similar techniques and the same erythroleukemic target cell line, K562. K562 is highly sensitive to lysis by human NK cells and, over the decades, the K562 51Chromium-release assay has become the most commonly used assay to detect human NK functional activity.[20] Its almost universal use has meant that experimental data can be compared easily by different laboratories around the world.
Using discontinuous density centrifugation and, later, monoclonal antibodies, natural killing ability was mapped to the subset of large, granular lymphocytes known today as NK cells. The demonstration that density gradient-isolated large granular lymphocytes were responsible for human NK activity, made by Timonen and Saksela in 1980,[21] was the first time that NK cells had been visualized microscopically and was a major breakthrough in the field.

New findings

Anti-cancer therapy

Tumor specific antibodies are being used to target and destroy tumors with specific antigens. These antibodies employ effector cells such as NK cells activating them via their FC regions to target and lyse the specific pathogen. This has proven successful in treatment against breast cancer. Also trialed is combining monoclonal antibodies with KIR on NK cells in human cancer patients, the success of this has not yet been confirmed but studies are aimed in myeloid leukemia and multiple myeloma.[4] Understanding the importance of NK cells in tumor-immuno-surveillance is key to advancing and finding new cancer therapies.
NK cells in a study at Children's Hospital Boston in coordination with Dana-Farber Cancer Institute, whereby immunocompromised mice had contracted lymphomas from EBV infection, an NK activating receptor called NKG2D was fused with a stimulatory Fc portion of the EBV antibody. The NKG2D-Fc fusion proved capable of reducing tumor growth and prolonging survival of the recipients.[22]
In autologous immune enhancement therapy (AIET) the in vitro expanded NK cells are used along with T cells taken from the patients own peripheral blood and cultured without using feeder layers or animal serum.[23] These cells intravenously injected to the patient have been documented to provide additional survival benefits to cancer victims.[24][25][26]

Innate resistance to HIV?

Recent research suggests that specific KIR-MHC class 1 gene interactions could control innate genetic resistance to certain viral infections including HIV and its consequent development of AIDS.[3] Certain HLA allotypes have been found to determine the progression of HIV to AIDS; an example is the HLA-B57 and HLA-B27 alleles, which have been found to defer progression of HIV to AIDS. This is evident because patients expressing these HLA alleles are observed to have lower viral loads and a more gradual decline in CD4+ T cells numbers. Despite considerable research and data collected measuring the genetic correlation of HLA alleles and KIR allotypes, a firm conclusion has not yet been drawn as to what combination provides decrease HIV and AIDS susceptibility. Future research would aim to pinpoint relevant KIR/HLA interactions with aim to produce a vaccine against HIV/AIDS. NK cells can impose immune pressure on HIV, something that had previously been described only for T cells and antibodies [27] and that HIV mutates to avoid NK cell activity.[27]

 

Literature

  • Cellular and Molecular Immunology by Abbul K. Abbas & Andrew Lichtman Saunders Copyright 2003
  • How the Immune System Works, 2nd edition, by Lauren Sompayrac, PhD Blackwell Publishing 2003
  • Immunobiology: The Immune System In Health And Disease by Janeway, Travers, Walport & Shlomchik Churchchill Livingstone Copyright 2005
  • Kuby Immunology, 6th edition, by Thomas J. Kindt, Richard A. Goldsby,and Barbara A.OsborneW.H. Freeman and Company,New York
  • Tsuda Y, Cygler M, Gibbs BF, et al. (December 1994). "Design of potent bivalent thrombin inhibitors based on hirudin sequence: incorporation of nonsubstrate-type active site inhibitors". Biochemistry 33 (48): 14443–51. doi:10.1021/bi00252a010. PMID 7981204.

Baldness as a Signal of Heart Disease Risk

Baldness as a Signal of Heart Disease Risk


Courtesy : NY Times and BMJ online.

Baldness may indicate an increased risk for coronary heart disease.
The risk is associated only with male pattern baldness, the kind that starts at the top or back of the head, and not with a receding hairline, according to researchers who reviewed six studies that included 37,000 participants.
The analysis, published online in BMJ Open, found that baldness increased the risk for heart disease by between 30 and 40 percent compared with men with a full head of hair. They found the association among men 55 to 60 as well as among older men, and the more severe the baldness, the greater the risk.
The reason for the association is unclear, but the authors suggest that known risk factors for heart disease — hypertension, high cholesterol, smoking and others — may affect both conditions, and that baldness may be a marker of atherosclerosis. In previous studies, baldness has been linked to an increased risk of prostate cancer, diabetes and high blood pressure.
“It may be premature to confirm this relationship on the basis of only six studies,” said a co-author, Dr. Kazuo Hara, an associate professor of medicine at the University of Tokyo. “But the ultimate aim is to be able to predict the risk for heart disease more precisely in clinical practice.”

Monday, March 11, 2013


Liver Stem Cells Discovered in Mice

Scientists successfully identified and grew a renewable population of liver stem cells for the first time, a new study reported. Tissues derived from these stem cells slightly boosted liver function when implanted into mice with a liver disorder. The findings could eventually lead to approaches that help rejuvenate damaged livers in people.
Confocal microscope image showing mass of cells with green and red areas.
A single cell was coaxed to mature into liver cells that produce common liver proteins (green and red). Image courtesy of Huch et al., Nature.
The liver is a large, versatile organ that has many jobs, including cleansing blood and digesting food. The liver also has a unique ability to quickly regenerate and regain its original size if partially removed by surgery. Scientists have long known that stem cells that have the potential to create more liver cells must exist in the adult liver. But until now, no one had found a way to detect and cultivate liver stem cells.
An international team led by Dr. Hans Clevers at the Hubrecht Institute, The Netherlands, sought to identify and grow mouse liver stem cells. Their work was funded in part by the European Union and NIH’s National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Results were described in Nature on February 14, 2013.
In earlier studies, Clevers and colleagues discovered that a protein called Lgr5 is found on the surface of rapidly dividing stem cells in the intestine, stomach and hair follicles. In all of these tissues, growth is prompted by signaling molecules known as Wnt proteins, which regulate expression ofLgr5 and many other genes. Wnt signaling is known to play a role in tissue regeneration, embryo development and cancer.
To see if Lgr5 might also be a marker for liver stem cells, the scientists studied genetically engineered mice in which Lgr5 genes were tagged by “reporter” genes. The researchers found that the gene was not activated in healthy mouse livers. But in injured livers, small Lgr5-positive cells appeared near the bile ducts—a location where resting liver stem cells were thought to reside. The cells also showed signs of Wnt signaling.
The researchers traced Lgr5-positive liver cells in mice after liver injury. Within a week, they detected small, fast-growing Lgr5 offspring cells, which later evolved into bile duct cells and liver cells.
To grow Lgr5-positive liver cells, the researchers used a 3-D culture system they’d previously developed for growing stem cells into tiny clumps, or “organoids.” Some of the cultures were propagated from a single Lgr5-positive cell. All were grown in a special medium that enhances Wnt signaling.
The team was able to grow and propagate the resulting liver organoids for several months. In culture, the organoids could be coaxed into generating functional liver and bile duct cells. When the organoids were injected into mutant mice with a deadly liver enzyme deficiency, patches of enzyme-producing liver cells appeared in the livers of 5 of the 15 treated mice. Mice with successful organoid transplants survived significantly longer than untreated enzyme-deficient mice.
“This study raises the hope that the human equivalent of these mouse liver stem cells can be grown in a similar way and efficiently converted into functional liver cells,” says coauthor Dr. Markus Grompe of the Oregon Health and Science University School of Medicine. Going forward, the researchers plan to test other growth factors and conditions to improve the efficiency of the procedure.
Only 3 days left for BSMMU online application submission : ......

Monday, December 31, 2012

Protein in human blood platelets points to a new weapon against malaria

One of the world's most devastating diseases is malaria, responsible for at least a million deaths annually, despite global efforts to combat it. Researchers from the Perelman School of Medicine at the University of Pennsylvania, working with collaborators from Drexel University, The Children's Hospital of Philadelphia, and Johns Hopkins University, have identified a protein in human blood platelets that points to a powerful new weapon against the disease. Their work was published in this months' issue of Cell Host and Microbe.
Malaria is caused by parasitic microorganisms of the Plasmodium genus, which infect red blood cells. Recent research at other universities showed that blood platelets can bind to infected red blood cells and kill the parasite, but the exact mechanism was unclear. The investigators on the Cell Host and Microbe paper hypothesized that it might involve host defense peptides (HDP) secreted by the platelets.
"We eventually found that a single protein secreted when platelets are activated called human platelet factor 4 [hPF4] actually kills parasites that are inside red cells without harming the red cell itself," explains senior author Doron Greenbaum, PhD, assistant professor of Pharmacology, whose team studies innovative ways to fight malaria. The hPF4 targets a specific organelle of the Plasmodium falciparum parasite called the digestive vacuole, which essentially serves as its "stomach" for the digestion of hemoglobin. The investigators found that hPF4 destroys the vacuole with a deadly speed of minutes or even seconds, killing the parasite without affecting the host cell.

While host defense peptides appear to be attractive therapeutic agents, the expense of manufacturing this protein lessens its potential impact on the treatment of malaria. Greenbaum and colleagues set out to discover whether synthetic molecules mimicking the structure of HDPs could have similar beneficial effects against the Plasmodium parasite. After screening approximately 2000 small molecule HDP mimics (smHDPs) developed by biotech company PolyMedix, Inc. of Radnor, PA, Greenbaum and his team found that "all of the best hits had the same mechanism of action against Plasmodium parasites."
Like the natural hPF4 found in platelets, the most effective smHDPs tested targeted only infected red blood cells, attacking and destroying the parasite in exactly the same way, but with even greater potency and speed. "The smHDPs get into infected red cells and lyse or basically destroy the digestive vacuole or stomach of the parasite more rapidly than the hPF4 protein," Greenbaum notes. "The protein from platelets is about 25 times less potent, but the surprising thing is they act with the same mechanism. With ease, within seconds, they destroy the vacuole of the parasite."
Greenbaum's team settled on two compounds, PMX1207 and PMX207, for testing in mouse models of malaria. Both compounds significantly decreased parasitic growth and greatly improved survival rates, providing further confirmation of the potential of smHDPs as antimalarial agents. The work, Greenbaum says, shows that "we can translate a natural arm of the innate immune system in platelets to drug-like small molecules that we are honing to become potent, selective, potentially less toxic, and cheaper to make as an antimalarial."
 
Aside from their great effectiveness, smHDPs may have several other advantages over other antimalarial therapies. As Plasmodium inevitably adapts and becomes resistant to a particular drug therapy, the efficacy of that treatment decreases and survival rates drop. By mimicking the body's own natural defenses, the new HDP-centered approach could avoid that pitfall. "Certainly with malaria we've had a lot of problems in the last 20 years with resistance," Greenbaum explains. "One of the unique features of the synthetic HDPs is that studies show that pathogens have a difficult time generating resistance to them, because they attack membranes, not proteins. So they might be intrinsically more difficult to become resistant against."
Although Greenbaum's team focused mostly on the chronic red-blood-cell stage of malaria, their HDP-mimic also shows promise against other stages of the disease. "We think that the mimics would be useful as a transmission-blocking therapeutic," Greenbaum says. "In other words, you prevent transmission from human to mosquito and therefore back to human again. We have positive data for those two stages. It's becoming increasingly more important in antimalarial drug development that people think more and more about multistage inhibition."
The next step for Greenbaum's team is to further hone the selectivity and potency of the smHDP compounds, while developing them into drugs that can be orally administered. As Greenbaum explains, practical antimalarials need to be "taken as pills rather than having to be used intravenously, which is not going to be appropriate for treatment in endemic countries, especially in more rural environments."

Source Penn Medicine

Protein in human blood platelets points to a new weapon against malaria

One of the world's most devastating diseases is malaria, responsible for at least a million deaths annually, despite global efforts to combat it. Researchers from the Perelman School of Medicine at the University of Pennsylvania, working with collaborators from Drexel University, The Children's Hospital of Philadelphia, and Johns Hopkins University, have identified a protein in human blood platelets that points to a powerful new weapon against the disease. Their work was published in this months' issue of Cell Host and Microbe.
Malaria is caused by parasitic microorganisms of the Plasmodium genus, which infect red blood cells. Recent research at other universities showed that blood platelets can bind to infected red blood cells and kill the parasite, but the exact mechanism was unclear. The investigators on the Cell Host and Microbe paper hypothesized that it might involve host defense peptides (HDP) secreted by the platelets.
"We eventually found that a single protein secreted when platelets are activated called human platelet factor 4 [hPF4] actually kills parasites that are inside red cells without harming the red cell itself," explains senior author Doron Greenbaum, PhD, assistant professor of Pharmacology, whose team studies innovative ways to fight malaria. The hPF4 targets a specific organelle of the Plasmodium falciparum parasite called the digestive vacuole, which essentially serves as its "stomach" for the digestion of hemoglobin. The investigators found that hPF4 destroys the vacuole with a deadly speed of minutes or even seconds, killing the parasite without affecting the host cell.

While host defense peptides appear to be attractive therapeutic agents, the expense of manufacturing this protein lessens its potential impact on the treatment of malaria. Greenbaum and colleagues set out to discover whether synthetic molecules mimicking the structure of HDPs could have similar beneficial effects against the Plasmodium parasite. After screening approximately 2000 small molecule HDP mimics (smHDPs) developed by biotech company PolyMedix, Inc. of Radnor, PA, Greenbaum and his team found that "all of the best hits had the same mechanism of action against Plasmodium parasites."
Like the natural hPF4 found in platelets, the most effective smHDPs tested targeted only infected red blood cells, attacking and destroying the parasite in exactly the same way, but with even greater potency and speed. "The smHDPs get into infected red cells and lyse or basically destroy the digestive vacuole or stomach of the parasite more rapidly than the hPF4 protein," Greenbaum notes. "The protein from platelets is about 25 times less potent, but the surprising thing is they act with the same mechanism. With ease, within seconds, they destroy the vacuole of the parasite."
Greenbaum's team settled on two compounds, PMX1207 and PMX207, for testing in mouse models of malaria. Both compounds significantly decreased parasitic growth and greatly improved survival rates, providing further confirmation of the potential of smHDPs as antimalarial agents. The work, Greenbaum says, shows that "we can translate a natural arm of the innate immune system in platelets to drug-like small molecules that we are honing to become potent, selective, potentially less toxic, and cheaper to make as an antimalarial."