Skip to main content

STEM CELL THERAPY.....

Stem Cells Fill Gaps in Bones




 For many patients the removal of several centimetres of bone from the lower leg following a serious injury or a tumour extraction is only the beginning of a long-lasting ordeal. Autologous stem cells have been found to accelerate and boost the healing process. Surgeons at the RUB clinic Bergmannsheil have achieved promising results: without stem cells, it takes on average 49 days for one centimetre of bone to regrow; with stem cells, that period has been reduced to 37 days.
In the past, large bone defect inevitably led to an amputation. Today, the arm or leg is stabilised in an external support, and a transport wire is pulled through the marrow of the intact part of the injured bone. Once the soft tissue surrounding the injury is healed, the surgeons cut the healthy part of the bone into two. The transport wire is affixed to the winches of a ring fixator that is attached around the leg. Using a sophisticated cable-pull system, the previously detached part of the bone is slowly pulled either downwards or upwards along the gap in the bone until it arrives and docks at the other end. During the pulling stage, the periosteum of the bone that had been pulled apart had been continuously stretched. Thus, a periosteum tube is created in the gap behind the relocated portion of the bone. Inside that tube, the new bone can regenerate. This process, however, is extremely tedious and the treatment fails in every firth case.

Processing autologous stem cells in the operating theatre
Surgeons at the RUB clinic Bergmannsheil attempt to optimise the healing process by applying autologous stem cells therapy. Depending on the requirements, stem cells are capable of evolving into different types of tissue cells, including so-called osteoblasts -- cells that are responsible for bone formation. Adult stem cells such as are deployed in the process can be found in the bone marrow of adults. "We harvest them by inserting a hollow needle into the iliac crest," explains PD Dr Dominik Seybold, managing consultant at the clinic.
The stem cells are prepared for application directly on location. Under x-ray control, the surgeons inject six to eight millilitres of the concentrated fluid into the centre of the periosteum tube. X-ray controls are routinely performed to monitor the recovery progress. To date, the RUB physicians have applied this therapy in 20 cases. "This is not enough to be statistically relevant," admits Dr Seybold. Nevertheless, the researchers find the results very encouraging: whilst the bone regeneration process without stem cells used to take 49 days on average, it has been reduced to 37 days on average thanks to the new therapy method. So far, RUB scientists have been treating bone defects with an average length of eight centimetres -- consequently, the patients thus recovered, on average, three months sooner.

Story Source:
The above story is reprinted from materials provided by Ruhr-Universitaet-Bochum, via AlphaGalileo.

Comments

Popular posts from this blog

Monoclonal Antibody Targets, Kills Leukemia Cells

Monoclonal Antibody Targets, Kills Leukemia Cells  Researchers at the University of California, San Diego Moores Cancer Center have identified a humanized monoclonal antibody that targets and directly kills chronic lymphocytic leukemia (CLL) cells The findings, published in the online Early Edition of the Proceedings of the National Academy of Sciences on March 25, 2013 represent a potential new therapy for treating at least some patients with CLL, the most common type of blood cancer in the United States. CLL cells express high levels of a cell-surface glycoprotein receptor called CD44. Principal investigator Thomas Kipps, MD, PhD, Evelyn and Edwin Tasch Chair in Cancer Research, and colleagues identified a monoclonal antibody called RG7356 that specifically targeted CD44 and was directly toxic to cancer cells, but had little effect on normal B cells. Moreover, they found RG7356 induced CLL cells that expressed the protein ZAP-70 to undergo apoptosis or programmed cell dea...

Natural killer cell = The wonder creation , may be a mutation of WBC......

Natural killer cell From Wikipedia, the free encyclopedia   (Redirected from Natural Killer cell ) Jump to: navigation , search Natural killer cells (or NK cells ) are a type of cytotoxic lymphocyte critical to the innate immune system . The role NK cells play is analogous to that of cytotoxic T cells in the vertebrate adaptive immune response . NK cells provide rapid responses to virally infected cells and respond to tumor formation, acting at around 3 days after infection . Typically immune cells detect MHC presented on infected cell surfaces, triggering cytokine release causing lysis or apoptosis . NK cells are unique, however, as they have the ability to recognize stressed cells in the absence of antibodies and MHC, allowing for a much faster immune reaction. They were named “natural killers” because of the initial notion that they do not require activation in order...

Protein in human blood platelets points to a new weapon against malaria

One of the world's most devastating diseases is   malaria , responsible for at least a million deaths annually, despite global efforts to combat it. Researchers from the Perelman School of Medicine at the University of Pennsylvania, working with collaborators from Drexel University, The Children's Hospital of Philadelphia, and Johns Hopkins University, have identified a protein in human blood platelets that points to a powerful new weapon against the disease. Their work was published in this months' issue of Cell Host and Microbe. Malaria is caused by parasitic microorganisms of the Plasmodium genus, which infect red blood cells. Recent research at other universities showed that blood platelets can bind to infected red blood cells and kill the parasite, but the exact mechanism was unclear. The investigators on the Cell Host and Microbe paper hypothesized that it might involve host defense peptides (HDP) secreted by the platelets. "We eventually found that a single...