Skip to main content

Stem Cell Treatment May Become Option to Treat Nonhealing Bone Fractures

Stem Cell Treatment May Become Option to Treat Non healing Bone Fractures


Stem cell therapy enriched with a bone-regenerating hormone, insulin-like growth factor-I (IGF-I), can help mend broken bones in fractures that are not healing normally, a new animal study finds.
The results are being presented at The Endocrine Society's 93rd Annual Meeting in Boston.
A deficiency of fracture healing is a common problem affecting an estimated 600,000 people annually in North America, according to the principal investigator, Anna Spagnoli, MD, associate professor of pediatrics and biomedical engineering at the University of North Carolina at Chapel Hill.
"This problem is even more serious," Spagnoli said, "in children with osteogenesis imperfecta, or brittle bone disease, and in elderly adults with osteoporosis, because their fragile bones can easily and repeatedly break, and bone graft surgical treatment is often not successful or feasible"
Fractures that do not heal within the normal timeframe are called non-union fractures. Using an animal model of a non-union fracture, a "knockout" mouse that lacks the ability to heal broken bones, Spagnoli and her colleagues studied the effects of transplanting adult stem cells enriched with IGF-I. They took mesenchymal stem cells (adult stem cells from the bone marrow) of mice and engineered the cells to express IGF-1. Then they transplanted the treated cells into knockout mice with a fracture of the tibia, the long bone of the leg.
Using computed tomography (CT) scanning, the researchers showed that the treated mice had better fracture healing than did control mice either left untreated or treated only with stem cells. They found that the stem cells enriched with IGF-I became bone cells and helped the cells in the broken bones to repair the fracture, speeding the healing. Compared with controls left to heal on their own, treated mice had more bone bridging the fracture gap, and that new bone was three to four times stronger, according to Spagnoli.
"More excitingly, we found that stem cells empowered with IGF-I restored the formation of new bone in a mouse lacking the ability to repair broken bones. This is the first evidence that stem cell therapy can address a deficiency of fracture repair," she said.
This success in an animal model of fracture non-union, Spagnoli said, "is a crucial step toward developing a stem cell-based treatment for patients with fracture non-unions."
"We envision a clinical use of combined mesenchymal stem cells and IGF-1 similar to the approach employed in bone marrow transplant, in which stem cell therapy is combined with growth factors to restore blood cells," she said. "I think this treatment will be feasible to start testing in patients in a few years."
IGF-I is approved for treatment of children with a deficiency of this hormone, causing growth failure.
The National Institutes of Health supported this study through a NIDDK-NIH R01 grant.

Comments

Popular posts from this blog

Liver Stem Cells Discovered in Mice Share on email Share on facebook Share on twitter Scientists successfully identified and grew a renewable population of liver stem cells for the first time, a new study reported. Tissues derived from these stem cells slightly boosted liver function when implanted into mice with a liver disorder. The findings could eventually lead to approaches that help rejuvenate damaged livers in people. A single cell was coaxed to mature into liver cells that produce common liver proteins (green and red).  Image courtesy of Huch et al.,  Nature . The liver is a large, versatile organ that has many jobs, including cleansing blood and digesting food. The liver also has a unique ability to quickly regenerate and regain its original size if partially removed by surgery. Scientists have long known that stem cells that have the potential to create more liver cells must exist in the adult liver. But until now, no one had found a way to detect a...

Overweight and Its Relation to CHD

UNDERSTANDING CORONARY HEART DISEASE (CHD) According to current estimates, 64.4 million Americans have one or more types of cardiovascular disease. Within cardiovascular diseases, coronary heart disease (CHD) is the single largest killer of Americans. CHD caused 502,189 deaths in the US in 2001 – about 1 in every 5. The American Heart Association estimates that 13.2 million Americans have CHD. In fact, up to half of all sudden, out-of-hospital cardiac deaths occur in people with no prior diagnosis of heart disease, and over two-thirds of heart attach sufferers have blockages in their arteries considered to be clinically “insignificant” in terms of plaque burden and percent stenosis. Until recently, it was widely held that most heart attacks were caused by a gradual build-up of atherosclerotic plaque within the arteries of the heart (“hardening of the arteries”), impedes blood flow, and eventually results in blocked blood vessels that can cause acute ischemic events such as...

Protein in human blood platelets points to a new weapon against malaria

One of the world's most devastating diseases is   malaria , responsible for at least a million deaths annually, despite global efforts to combat it. Researchers from the Perelman School of Medicine at the University of Pennsylvania, working with collaborators from Drexel University, The Children's Hospital of Philadelphia, and Johns Hopkins University, have identified a protein in human blood platelets that points to a powerful new weapon against the disease. Their work was published in this months' issue of Cell Host and Microbe. Malaria is caused by parasitic microorganisms of the Plasmodium genus, which infect red blood cells. Recent research at other universities showed that blood platelets can bind to infected red blood cells and kill the parasite, but the exact mechanism was unclear. The investigators on the Cell Host and Microbe paper hypothesized that it might involve host defense peptides (HDP) secreted by the platelets. "We eventually found that a single...